The influence of the of sheds geometry on the pressure coefficients of the surface of the closed buildings

Marieli Azoia Lukiantchuki, Alessandra Prata Shimomura, Fernando Marques da Silva, Rosana Maria Caram

Resumo

Knowledge of the pressure distribution on building walls is important for the evaluation of wind loads and natural ventilation. Wind induced pressure distributions are influenced by a wide range of factors including urban surroundings and building geometry. However, the majority of these studies focused on simple building geometries without volume details such as shed roof. The lack of data for complex geometries leads designers to use existing databases for simple geometries which is not compatible with the pressure distribution on the building surfaces with complex geometries. In this study, the influence of geometry building on pressure coefficient distribution around closed buildings was investigated. Four models were evaluated. A reference case with simple geometry and three models with shed roofs are analyzed. Model 1 has orthogonal sheds on the roof; Models 2 and 3 have aerodynamic sheds on the roof. The methodology used is Computational Fluid Dynamic (CFD) simulation. It is shown that shed roof buildings can lead to very strong changes in the pressure distribution, because they introduce multiple areas of flow separation and recirculation across the facade. In addition, significant changes were identified with aerodynamic sheds in relation to orthogonal sheds.

Texto completo:

PDF

Número de visualizações: 21

Referências

ALLARD, F. Natural ventilation in buildings: a design handbook. London: James x James, 1998.

AWBI, H. B. Ventilation of buildings. London: E & FN Spon, 1998.

BITTENCOURT, L.; CÂNDIDO, C. Introdução à ventilação natural. Maceió: Edufal, 2008.

BRANDÃO, R. S. As interações espaciais urbanas e o clima. Tese (Doutorado em Arquitetura e Urbanismo) - Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2009.

BUILDING RESEARCH ESTABLISHMENT. Principles of natural ventilation. Garston: BRE, 1978. (Digest, n. 210)

CALAUTIT, J. K.; HUGHES, B. R. Wind tunnel and CFD study of the natural ventilation performance of a commercial multidirectional wind tower. Building and Environment, v. 80, p. 71-83, 2014.

COST. Cost Action 14: Recommendations on the use of CFD in predicting pedestrian wind environment. Bruxelas: COST, 2004.

CÓSTOLA, D. Ventilação por ação do vento no edifício: procedimentos para quantificação. 2006. Dissertação (Mestrado em Tecnologia da Construção) - Universidade de São Paulo, São Paulo, 2006.

CÓSTOLA, D.; ALUCCI, M. P. Aplicação de CFD para o cálculo de coeficientes de pressão externos nas aberturas de um edifício. Revista Ambiente Construído, v. 11, n. 1, p. 145-158, jan./mar. 2011.

CÓSTOLA, D.; BLOCKEN, B.; HENSEN, J. L. M. Overview of pressure coefficient data in building energy simulation and airflow network programs. Building Environment, v. 44, n. 10, p. 2027-2036, Oct. 2009.

CÓSTOLA, D.; BLOCKEN, B.; OHBA, M.; HENSEN, J. L. M. Uncertainty in airflow rate calculations due to the use of surface-averaged pressure coefficients. Energy and Buildings, v. 42, p. 881-888, 2010.

CRAWLEY, D. B.; HAND, J. W.; KUMMERT, M.; GRIFFITH, B. T. Contrasting the capabilities of building energy performance simulation programas. Building and Environment, v. 43, n. 4, p. 661-673, 2008.

ETHERIDGE, D. W.; SANDBERG, M. Building ventilation: theory & measure. Chichester: John Wiles & Sons, 1996.

FRANKE, J.; HELLSTEN, A.; SCHLÜNZEN, H.; CARISSIMO, B. (Ed.). Best practice guideline for the CFD simulation of flows in the urban environment. Brussels: COST Office, 2007.

HARRIES, A. Notas de aula. São Paulo; CFX – FAU/USP, 2005.

KARAVA, P.; STATHOPOULOS, T.; ATHIENITIS, A. K. Wind driven flow through openings e a review of discharge coefficients. International Journal of Ventilation, v. 3, p. 255-66, 2004.

KIM, Y. C.; YOSHIDA, A.; TAMURA, Y. Characteristics of surface wind pressures on low-rise building located among large group of surrounding buildings. Engineering Structures, v. 35, p. 18-28, 2012.

LEITE, C. G. Alterações da ventilação urbana frente ao processo de verticalização de avenidas litorâneas: o caso da avenida litorânea de São Luís/MA. 2008. Dissertação (Mestrado em Arquitetura e Urbanismo) - Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2008.

LEVITAN, M. L.; MEHTA, K.; VANN, W. P.; HOLMES, J. D. Field measurements of pressures on the Texas tech building. Journal of Wind Engineering and Industrial Aerodynamics, v. 38, n. 2-3, p. 227-234, July/Aug. 1991.

LUKIANTCHUKI, M. A. Sheds extratores e captadores de ar para indução da ventilação natural em edificações. 2015. Tese (Doutorado em Arquitetura e Urbanismo) – Instituto de Arquitetura e Urbanismo, Universidade de São Paulo, São Carlos, 2015.

MONTAZERI, H.; AZIZIAN, R. (2008). Experimental study on natural ventilation performance of one-sided wind catcher. Building Environment, v. 43, p. 2193-202, 2008.

MONTAZERI, H.; MONTAZERI, F.; AZIZIAN, R. MOSTAFAVI, S. Two-sided wind catcher performance evaluation using experimental, numerical and analytical modeling. Renew Energy, v. 35, p.1424-35, 2010.

ORME, M. L. Applicable models for air infiltration and ventilation calculations. [S.l.]: AIVC, 1999. 66 p. (Technical note 51).

ORME, M.; LIDDAMENT, M.; WILSON, A. Numerical data for air infiltration and natural ventilation calculations. [. S.l.]: AIVC – Air Infiltration and ventilation Center, 1994. (Technical Note 44).

PRATA, A. R. Impacto da altura de edifícios nas condições de ventilação natural no meio urbano. 2005. Tese (Doutorado em Arquitetura e Urbanismo) - Faculdade de Arquitetura e Urbanismo, Universidade de São Paulo, São Paulo, 2005.

SANTAMOURIS, M.; WOUTERS, P. Building ventilation: the state of the art. London: Earthscan, 2006.

SANTOS, J. Ação do vento em desfiladeiros urbanos. 2016. Dissertação (Mestrado em Energia e Ambiente) - Universidade de Lisboa, Lisboa, 2016.

STATHOPOULOS, T. Computational wind engineering: past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics, v.67-68, p. 509-532, Apr./June, 1997.

STATHOPOULOS, T.; ZHU, X. Wind pressures on building with appurtenances. Journal of Wind Engineering and Industrial Aerodynamics, v. 31, n. 1-2, p. 265-281, Dec. 1988.

TOKYO POLITECHNIQUE UNIVERSITY. School of Arquitecture and Wind Engineering. TPU Aerodynamic Database. Disponível em: . Acesso em: 20 jun. 2018.

TOMINAGA, Y. et al. AIJ guidelines for practical applications of CFD to pedestrian wind environment around buildings. Journal of Wind Engineering and Industrial Aerodynamics, v. 96, n. 10-11, p. 1749-1761, Oct./Dec. 2008.

UEMATSU, Y.; ISYUMOV, N. Wind pressures acting on low-rise buildings. Journal of Wind Engineering and Industrial Aerodynamics, v. 82, n. 1-3, p. 1-25, 1999.

WIT, S. Uncertainty in predictions of thermal comfort in buildings. 2001. Thesis (PhD thesis) - School of Civil Engineering, University of Nottingham, Nottingham 2001.

Apontamentos

  • Não há apontamentos.